Menu
×
   ❮   
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

SciPy Statistical Significance Tests


What is Statistical Significance Test?

In statistics, statistical significance means that the result that was produced has a reason behind it, it was not produced randomly, or by chance.

SciPy provides us with a module called scipy.stats, which has functions for performing statistical significance tests.

Here are some techniques and keywords that are important when performing such tests:


Hypothesis in Statistics

Hypothesis is an assumption about a parameter in population.


Null Hypothesis

It assumes that the observation is not statistically significant.


Alternate Hypothesis

It assumes that the observations are due to some reason.

It's alternate to Null Hypothesis.

Example:

For an assessment of a student we would take:

"student is worse than average" - as a null hypothesis, and:

"student is better than average" - as an alternate hypothesis.


One tailed test

When our hypothesis is testing for one side of the value only, it is called "one tailed test".

Example:

For the null hypothesis:

"the mean is equal to k", we can have alternate hypothesis:

"the mean is less than k", or:

"the mean is greater than k"


Two tailed test

When our hypothesis is testing for both side of the values.

Example:

For the null hypothesis:

"the mean is equal to k", we can have alternate hypothesis:

"the mean is not equal to k"

In this case the mean is less than, or greater than k, and both sides are to be checked.


Alpha value

Alpha value is the level of significance.

Example:

How close to extremes the data must be for null hypothesis to be rejected.

It is usually taken as 0.01, 0.05, or 0.1.


P value

P value tells how close to extreme the data actually is.

P value and alpha values are compared to establish the statistical significance.

If p value <= alpha we reject the null hypothesis and say that the data is statistically significant. otherwise we accept the null hypothesis.



T-Test

T-tests are used to determine if there is significant deference between means of two variables and lets us know if they belong to the same distribution.

It is a two tailed test.

The function ttest_ind() takes two samples of same size and produces a tuple of t-statistic and p-value.

Example

Find if the given values v1 and v2 are from same distribution:

import numpy as np
from scipy.stats import ttest_ind

v1 = np.random.normal(size=100)
v2 = np.random.normal(size=100)

res = ttest_ind(v1, v2)

print(res)

Result:


  Ttest_indResult(statistic=0.40833510339674095, pvalue=0.68346891833752133)

Try it Yourself »

If you want to return only the p-value, use the pvalue property:

Example

...
res = ttest_ind(v1, v2).pvalue

print(res)

Result:


  0.68346891833752133

Try it Yourself »

KS-Test

KS test is used to check if given values follow a distribution.

The function takes the value to be tested, and the CDF as two parameters.

A CDF can be either a string or a callable function that returns the probability.

It can be used as a one tailed or two tailed test.

By default it is two tailed. We can pass parameter alternative as a string of one of two-sided, less, or greater.

Example

Find if the given value follows the normal distribution:

import numpy as np
from scipy.stats import kstest

v = np.random.normal(size=100)

res = kstest(v, 'norm')

print(res)

Result:


  KstestResult(statistic=0.047798701221956841, pvalue=0.97630967161777515)

Try it Yourself »

Statistical Description of Data

In order to see a summary of values in an array, we can use the describe() function.

It returns the following description:

  1. number of observations (nobs)
  2. minimum and maximum values = minmax
  3. mean
  4. variance
  5. skewness
  6. kurtosis

Example

Show statistical description of the values in an array:

import numpy as np
from scipy.stats import describe

v = np.random.normal(size=100)
res = describe(v)

print(res)

Result:


  DescribeResult(
    nobs=100,
    minmax=(-2.0991855456740121, 2.1304142707414964),
    mean=0.11503747689121079,
    variance=0.99418092655064605,
    skewness=0.013953400984243667,
    kurtosis=-0.671060517912661
  )

Try it Yourself »

Normality Tests (Skewness and Kurtosis)

Normality tests are based on the skewness and kurtosis.

The normaltest() function returns p value for the null hypothesis:

"x comes from a normal distribution".


Skewness:

A measure of symmetry in data.

For normal distributions it is 0.

If it is negative, it means the data is skewed left.

If it is positive it means the data is skewed right.


Kurtosis:

A measure of whether the data is heavy or lightly tailed to a normal distribution.

Positive kurtosis means heavy tailed.

Negative kurtosis means lightly tailed.


Example

Find skewness and kurtosis of values in an array:

import numpy as np
from scipy.stats import skew, kurtosis

v = np.random.normal(size=100)

print(skew(v))
print(kurtosis(v))

Result:


  0.11168446328610283
  -0.1879320563260931

Try it Yourself »

Example

Find if the data comes from a normal distribution:

import numpy as np
from scipy.stats import normaltest

v = np.random.normal(size=100)

print(normaltest(v))

Result:


  NormaltestResult(statistic=4.4783745697002848, pvalue=0.10654505998635538)

Try it Yourself »


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.