Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

Linear Regressions

A Regression is a method to determine the relationship between one variable (y) and other variables (x).

In statistics, a Linear Regression is an approach to modeling a linear relationship between y and x.

In Machine Learning, a Linear Regression is a supervised machine learning algorithm.

Scatter Plot

This is the scatter plot (from the previous chapter):

Example

const xArray = [50,60,70,80,90,100,110,120,130,140,150];
const yArray = [7,8,8,9,9,9,10,11,14,14,15];

// Define Data
const data = [{
  x:xArray,
  y:yArray,
  mode: "markers"
}];

// Define Layout
const layout = {
  xaxis: {range: [40, 160], title: "Square Meters"},
  yaxis: {range: [5, 16], title: "Price in Millions"},
  title: "House Prices vs. Size"
};

Plotly.newPlot("myPlot", data, layout);
Try it Yourself »

Predicting Values

From the scattered data above, how can we predict future prices?

  • Use hand drawn linear graph
  • Model a linear relationship
  • Model a linear regression


Linear Graphs

This is a linear graph predicting prices based on the lowest and the highest price:

Example

const xArray = [50,60,70,80,90,100,110,120,130,140,150];
const yArray = [7,8,8,9,9,9,9,10,11,14,14,15];

const data = [
  {x:xArray, y:yArray, mode:"markers"},
  {x:[50,150], y:[7,15], mode:"line"}
];

const layout = {
  xaxis: {range: [40, 160], title: "Square Meters"},
  yaxis: {range: [5, 16], title: "Price in Millions"},
  title: "House Prices vs. Size"
};

Plotly.newPlot("myPlot", data, layout);
Try it Yourself »

From a Previous Chapter

A linear graph can be written as y = ax + b

Where:

  • y is the price we want to predict
  • a is the slope of the line
  • x are the input values
  • b is the intercept

Linear Relationships

This Model predicts prices using a linear relationship between price and size:

Example

const xArray = [50,60,70,80,90,100,110,120,130,140,150];
const yArray = [7,8,8,9,9,9,10,11,14,14,15];

// Calculate Slope
let xSum = xArray.reduce(function(a, b){return a + b;}, 0);
let ySum = yArray.reduce(function(a, b){return a + b;}, 0);
let slope = ySum / xSum;

// Generate values
const xValues = [];
const yValues = [];
for (let x = 50; x <= 150; x += 1) {
  xValues.push(x);
  yValues.push(x * slope);
}
Try it Yourself »

In the example above, the slope is a calculated average and the intercept = 0.


Using a Linear Regression Function

This Model predicts prices using a linear regression function:

Example

const xArray = [50,60,70,80,90,100,110,120,130,140,150];
const yArray = [7,8,8,9,9,9,10,11,14,14,15];

// Calculate Sums
let xSum=0, ySum=0 , xxSum=0, xySum=0;
let count = xArray.length;
for (let i = 0, len = count; i < count; i++) {
  xSum += xArray[i];
  ySum += yArray[i];
  xxSum += xArray[i] * xArray[i];
  xySum += xArray[i] * yArray[i];
}

// Calculate slope and intercept
let slope = (count * xySum - xSum * ySum) / (count * xxSum - xSum * xSum);
let intercept = (ySum / count) - (slope * xSum) / count;

// Generate values
const xValues = [];
const yValues = [];
for (let x = 50; x <= 150; x += 1) {
  xValues.push(x);
  yValues.push(x * slope + intercept);
}
Try it Yourself »

Polynomial Regression

If scattered data points do not fit a linear regression (a straight line through the points), the data may fit an polynomial regression.

A Polynomial Regression, like linear regression, uses the relationship between the variables x and y to find the best way to draw a line through the data points. Polynormal Regression

×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.