Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

Pandas DataFrame quantile() Method

❮ DataFrame Reference


Example

Return the values at the 0.2 quantile for each column:

import pandas as pd

data = [[1, 1, 2], [6, 4, 2], [4, 2, 1], [4, 2, 3]]

df = pd.DataFrame(data)

print(df.quantile(0.2))
Try it Yourself »

Definition and Usage

The quantile() method calculates the quantile of the values in a given axis. Default axis is row.

By specifying the column axis (axis='columns'), the quantile() method calculates the quantile column-wise and returns the mean value for each row.


Syntax

dataframe.quantile(q, axis, numeric_only, unterpolation)

Parameters

The q, axis, numeric_only parameters are keyword arguments.

Parameter Value Description
q Float
Array
Optional, Default 0.5. Specifies the quantile to calculate.
axis 0
1
'index'
'columns'
Optional, Which axis to check, default 0.
numeric_only True
False
Optional. Specify whether to only check numeric values. Default True
interpolation 'higher'
'linear'
'lower'
'midpoint'
'nearest'
Optional. Specifies the interpolation method to use.

 Return Value

A Series or a DataFrame object with the quantiles.

If the q argument is a Float, the return value will be a Series object.

If the q argument is an Array, the return value will be a DataFrame object.

This function does NOT make changes to the original DataFrame object.


❮ DataFrame Reference

×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.